EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method

نویسندگان

  • Montri Phothisonothai
  • Masahiro Nakagawa
چکیده

— The objective of this paper is to characterize the spontaneous electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine or a brain-computer interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the critical exponent method (CEM). The EEG signal was registered in 5 healthy subjects, sampling 15 measuring channels at 1024 Hz. Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the space resolution. The EEG of each channel was segmented and its fractal dimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution, the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quanti ed and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications. Keywords— electroencephalogram (EEG), motor imagery tasks, mental tasks, biomedical signals processing, human-machine interface, fractal analysis, critical exponent method (CEM).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of EEG-based motor imagery BCI by using ECOC

AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...

متن کامل

Motor Imagery EEG Classification for Patients with Amyotrophic Lateral Sclerosis Using Fractal Dimension and Fisher’s Criterion-Based Channel Selection

Motor imagery is based on the volitional modulation of sensorimotor rhythms (SMRs); however, the sensorimotor processes in patients with amyotrophic lateral sclerosis (ALS) are impaired, leading to degenerated motor imagery ability. Thus, motor imagery classification in ALS patients has been considered challenging in the brain-computer interface (BCI) community. In this study, we address this c...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

ارائه یک روش برچسب ‌گذاری سیگنال‎های مغزی به‎منظور طبقه‎بندی حالت‎های مختلف بیهوشی

 Aims and background:    This    study    develops    a    computational    framework    for    the    classification    of    different    anesthesia    states,    including    awake,    moderate    anesthesia,    and    general    anesthesia,    using    electroencephalography    (EEG)    signals    and    peripheral    parameters. Materials and Methods: The    proposed    method    proposes ...

متن کامل

Evaluating the versatility of EEG models generated from motor imagery tasks: An exploratory investigation on upper-limb elbow-centered motor imagery tasks

Electroencephalography (EEG) has recently been considered for use in rehabilitation of people with motor deficits. EEG data from the motor imagery of different body movements have been used, for instance, as an EEG-based control method to send commands to rehabilitation devices that assist people to perform a variety of different motor tasks. However, it is both time and effort consuming to go ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012